Sabtu, 29 Maret 2014

TERBENTUKNYA ALAM SEMESTA DAN PENGHUNINYA




TERBENTUKNYA ALAM SEMESTA
DAN
PENGHUNINYA





Oleh :
Priatna santoro /16513914













BAB I
PENDAHULUAN
1.1. Latar Belakang

Apakah kalian sadar sebelumnya betapa luasnya alam semesta ini yang telah kita diami.Mungkin memang belum banyak yang  mengetahuinya tentang hal tersebut dan  kamu tentu masih sangat sulit membayangkan betapa besar ukuran alam semesta ini dan seisinya. Dan bayangkan betapa kecilnya dirimu dan sangat rapuhnya dirimu di alam semesta ini.  Jika kau ingin mencoba membayangkan betapa luasnya alam semesta ini cobalah kau mengukur jarak .  contoh. Coba kau bayangkan jarak jika dirimu tinggal dikota bekasi dan kau ingin pergi ke kota jakarta dan tujuanya adalah monumen nasional ( monas ). Yang terdapat di pusak ibu kota. Pasti setidaknya kau akan menyadari betapa sangat cukup jauh jaraknya dan saat kau berfikir sangat jauh jaraknya pasti kau akan berfikir sangat luasnya alam semesta ini.

1.2. Rumusan Masalah

Untuk memfokuskan makalah ini penulis dapat merumuskan masalah sebagai berikut :
1. Bagaimana terbentuknya alam semesta ?
2.proses terbentuknya alam semesta ?
3. Bagaimanakah bentuk alam semesta ?
4. Seperti apakah kehidupan yang terjadi dibumi ?
5. seperti apakah susunan tata surya yang ada dialam semesta ?

1.3.Tujuan Penulisan

Penulis makalah ini memilih beberapa tujuan antara lain adalah :
1. Untuk mengetahui/memahami proses terciptanya alam semesta serta terjadinya kehidupan di muka bumi.
2. agar pengetahuan kita dapat lebih luas lagi terutama tentang tata surya.

BAB II
PEMBAHASAN
2.1.  terbentuknya alam semesta

a. Proses Terbentuknya Alam Semesta

Setelah terjadinya ledakan (big Bang), terjadilah semacam bencana alam semesta (cosmic cataclysm). Alam semesta dipenuhi oleh bola-bola api yang sangat panas dan padat. Dari bola-bola api inilah kemudian terbentuk partikel-partikel dasar dan muatan-muatan energi, dari muatan-muatan energi ini kemudian terbentuk daya-daya kekuatan di alam semesta. Daya kekuatan alam yang diperkirakan pertama kali terbentuk adalah daya gravitasi, kemudian daya nuklir serta daya electromagnetis.
Partikel-partikel dasar yaitu elektron, proton, neutron dan lain-lain saling bertabrakan kemudian membentuk proton dan neutron. Selama masa ini sebagian besar energi masih berbentuk radiasi (percikan-percikan cahaya dari bola-bola api).
Alam semesta terus mengembang dan perlahan-lahan mulai mendingin. Pada tahap ini, inti atom hidrogen, helium dan litium mulai membentuk. Tahap selanjutnya alam semesta mulai memasuki tahap suhu yang cukup dingin sehingga partikel-partikel elektron yang bermuatan negatif dapat berkait dan menyatu dengan inti-inti atom hidrogen dan helium yang bermuatan positif untuk kemudian membentuk atom-atom yang netral.
Karena alam semesta terus membesar, kepadatannya otomatis semakin berkurang dan suhunya juga semakin mendingin.
Proses pengembangan alam semesta terus berlanjut dengan tingkat kecepatan yang tinggi. Daya gravitasi mulai mempengaruhi tingkat kepadatan gas-gas yang terbentuk akibat Big Bang, sehingga menciptakan gumpalan-gumpalan awan gas. Saat gumpalan-gumpalan ini semakin memadat, inti gumpalan gas tersebut juga bertambah padat berlipat-lipat dengan suhu yang juga terus meningkat panas sampai akhirnya menyala sebagai bentuk awal sebuah bintang. Saat semua kantong-kantong gas mengalami proses serupa maka kelompok bintang-bintang muda ini membentuk menjadi sebuah gugusan bintang (galaksi). Seluruh proses di atas, dari Big Bang hingga terbentuknya planet, bintang serta galaksi berlangsung dalam kurun waktu milyaran tahun.Seperti halnya proses pembentukan bintang-bintang yang lain, bintang kita, yang kita kenal dengan nama Matahati (sun) juga terbentuk dari gumpalan atau kantong awan gas. Gumpalan awan gas yang berbentuk piringan yang sangat luas ini beterbangan berputar-putar. Bagian tengahnya mulai padat dan memanas untuk kemudian menyala menjadi bintang sementara materi sisa disekelilingnya saling bertumbukan, menyatu dan menggumpal membentuk planet-planet, bulan-bulan dan asteroid. Bumi yang merupakan bagian kecil dari material yang menggumpal ini menjadi planet ke tiga. Dengan suhunya yang relatif lebih dingin, memungkinkan terbentuknya atmosfer pendukung kehidupan.

b. Terbentuknya Materi Padat

Setelah big bang sampai 300.000 tahun kemudian, bentuk materi masih berupa gas. Dari gumpalan-gumpalan gas ini selanjutnya bintang-bintang berukuran sangat besar mulai terbentuk tetapi hanya berusia pendek karena kemudian meledak (supernova). Setelah meledak gas-gasnya menggumpal lagi, menjadi padat, kemudian menyala dan terbentuk bintang-bintang lagi yang berukuran lebih kecil,
meledak kembali, demikian terus menerus untuk beberapa kali sampai akhirnya terbentuk materi-materi berat di inti bintang-bintang yang meledak. Materi-materi padat inilah yang kemudian membentuk benda-benda di alam semesta seperti yang sekarang ini seperti planet-planet dll bahkan unsur-unsur pembentuk tubuh kita sebagian besar dari materi-materi berat ini.
Jadi, materi-materi padat dibentuk di dalam inti bintang melalui proses fusi nuklir (peleburan / penyatuan materi nuklir) dan dimulai dari materi-materi ringan seperti hidrogen dan helium. Sementara materi-materi yang lebih berat seperti karbon, oksigen, nitrogen hingga besi dibentuk di dalam inti bintang karena memang suhu dan tekanannya lebih memungkinkan. Materi-materi ini terlempar ke luar angkasa saat bintang-bintang tersebut meledak.

2.2.  hipotesis ”keadaan stabil”

Teori Dentuman Besar dengan cepat diterima luas oleh dunia ilmiah karena bukti-bukti yang jelas. Namun, para ahli astronomi yang memihak materialisme dan setia pada gagasan alam semesta tanpa batas yang dituntut paham ini menentang Dentuman Besar dalam usaha mereka mempertahankan doktrin fundamental ideologi mereka. Alasan mereka dijelaskan oleh ahli astronomi Inggris, Arthur Eddington, yang berkata, “Secara filosofis, pendapat tentang permulaan yang tiba-tiba dari keter-aturan alam sekarang ini bertentangan denganku.
Ahli astronomi lain yang menentang teori Dentuman Besar adalah Fred Hoyle. Sekitar pertengahan abad ke-20 dia mengemukakan sebuah model baru yang disebutnya “keadaan-stabil”, yang tak lebih suatu per-panjangan gagasan abad ke-19 tentang alam semesta tanpa batas. Dengan menerima bukti-bukti yang tidak bisa disangkal bahwa jagat raya mengembang, dia berpendapat bahwa alam semesta tak terbatas, baik dalam dimensi maupun waktu. Menurut model ini, ketika jagat raya mengembang, materi baru terus-menerus muncul dengan sendirinya dalam jumlah yang tepat sehingga alam semesta tetap berada dalam “keadaan-stabil”. Dengan satu tujuan jelas mendukung dogma “materi sudah ada sejak waktu tak terbatas”, yang merupakan basis filsafat mate-rialis, teori ini mutlak bertentangan dengan “teori Dentuman Besar”, yang menyatakan bahwa alam semesta mempunyai permulaan. Pendukung teori keadaan-stabil Hoyle tetap berkeras menentang Dentuman Besar selama bertahun-tahun. Namun, sains menyangkal mereka.

2.3. Evolusi  alam semesta

Naluri manusia selalu ingin mengetahui asal usul sesuatu, termasuk asal-usul alam semesta. Berbagai hasil pengamatan dianalisis dengan dukungan teori-teori fisika untuk mengungkapkan asal-usul alam semesta. Teori yang kini diyakini bukti-buktinya menyatakan bahwa alam semesta ini bermula dari ledakan besar (Big Bang) sekitar 13,7 milyar tahun yang lalu. Semua materi dan energi yang kini ada di alam terkumpul dalam satu titik tak berdimensi yang berkerapatan tak berhingga. Tetapi ini jangan dibayangkan seolah olah titik itu berada di suatu tempat di alam yang kita kenal sekarang ini. Yang benar, baik materi, energi, maupun ruang yang ditempatinya seluruhnya bervolume amat kecil, hanya satu titik tak berdimensi.
Tidak ada suatu titik pun di alam semesta yang dapat dianggap sebagai pusat ledakan. Dengan kata lain ledakan besar alam semesta tidak seperti ledakan bom yang meledak dari satu titik ke segenap penjuru. Hal ini karena pada hakekatnya seluruh alam turut serta dalam ledakan itu. Lebih tepatnya, seluruh alam semesta mengembang tiba tiba secara serentak. Ketika itulah mulainya terbentuk materi, ruang, dan waktu.
Materi alam semesta yang pertama terbentuk adalah hidrogen yang menjadi bahan dasar bintang dan galaksi generasi pertama. Dari reaksi fusi nuklir di dalam bintang terbentuklah unsur-unsur berat seperti karbon, oksigen, nitrogen, dan besi. Kandungan unsur-unsur berat dalam komposisi materi bintang merupakan salah satu "akte" lahir bintang. Bintang-bintang yang mengandung banyak unsur berat berarti bintang itu "generasi muda" yang memanfaatkan materi-materi sisa ledakan bintang-bintang tua. Materi pembentuk bumi pun diyakini berasal dari debu dan gas antar bintang yang berasal dari ledakan bintang di masa lalu. Jadi, seisi alam ini memang berasal dari satu kesatuan.
Bukti-bukti pengamatan menunjukkan bahwa alam semesta mengembang. Spektrum galaksi galaksi yang jauh sebagian besar menunjukkan bergeser ke arah merah yang dikenal sebagai red shift (panjang gelombangnya bertambah karena alam mengembang). Ini merupakan petunjuk bahwa galaksi galaksi itu saling menjauh. Sebenarnya yang terjadi adalah pengembangan ruang. Galaksi galaksi itu (dalam ukuran alam semesta hanya dianggap seperti partikel partikel) dapat dikatakan menempati kedudukan yang tetap dalam ruang, dan ruang itu sendiri yang sedang berekspansi. Kita tidak mengenal adanya ruang di luar alam ini. Oleh karenanya kita tidak bisa menanyakan ada apa di luar semesta ini.
Secara sederhana, keadaan awal alam semesta dan pengembangannya itu dapat diilustrasikan dengan pembuatan roti. Materi pembentuk roti itu semula terkumpul dalam gumpalan kecil. Kemudian mulai mengembang. Dengan kata lain "ruang" roti sedang mengembang. Butir butir partikel di dalam roti itu (analog dengan galaksi di alam semesta) saling menjauh sejalan dengan pengembangan roti itu (analog dengan alam).
Dalam ilustrasi tersebut, kita berada di salah satu partikel di dalam roti itu. Di luar roti, kita tidak mengenal adanya ruang lain, karena pengetahuan kita, yang berada di dalam roti itu, terbatas hanya pada ruang roti itu sendiri. Demikian pulalah, kita tidak mengenal alam fisik lain di luar dimensi "ruang waktu" yang kita kenal.
Bukti lain adanya pengembangan alam semesta di peroleh dari pengamatan radio astronomi. Radiasi yang terpancar pada saat awal pembentukan itu masih berupa cahaya. Namun karena alam semesta terus mengembang, panjang gelombang radiasi itu pun makin panjang, menjadi gelombang radio. Kini radiasi awal itu dikenal sebagai radiasi latar belakang kosmik (cosmic background radiation) yang dapat dideteksi dengan teleskop radio.

2.4. Galaksi

Berdasarkan Hipotesis Fowler, galaksi berawal dari suatu kabut gas pijar dengan massa yang sangat besar. Kabut ini kemudian mengadakan kontraksi dan kondensasi sambil terus berputar pada sumbunya. Ada massa yang tertinggal, yakni pada bagian luar dari kabut pijar tadi. Massa itu juga mengadakan kontraksi dan kondensasi maka terbentuklah gumpalan gas pijar yaitu bintang-bintang. Bagi yang bermassa besar masih berupa kabut bintang. Dengan cara yang sama, bagian luar bintang yang tertinggal juga mengadakan kondensasi sehingga terbentuklah planet. Demikian juga bagian planet membentuk satelit bulan.
Bima Sakti atau Milky Way, berbentuk seperti kue cucur. Matahari kita terletak kira-kira pada jarak 2/3, dihitung dari pusat galaksi itu sampai ke tepiannya.
Tata surya terdiri dari matahari sebagai pusat, benda-benda lain seperti planet, satelit, meteor-meteor, komet-komet, debu dan gas antarplanet beredar mengelilinginya. Teori-teori yang mendukung terbentuknya tata surya, antara lain Hipotesis Nebular, Hipotesis Planettesimal, Teori Tidal, Teori Bintang Kembar, Teori Creatio Continua dan Teori G.P. Kuiper. 

2.5. Susunan tata surya
 
Matahari kita dikelilingi oleh sembilan planet. Empat buah yang dekat dengan Matahari disebut planet dalam, yaitu Merkurius, Venus, Bumi dan Mars. Lima lainnya yang disebut planet luar berada relatif jauh dengan Matahari dan umumnya besar-besar. Mereka adalah Jupiter, Saturnus, Uranus, Neptunus, dan Pluto.
Anggota. tata. surya yang lain adalah:
1. Asteroida, berbentuk semacam planet tetapi sangat kecil, bergaris tengah 500 mil, jumlahnya lebih dari 2.000 buah dan terletak antara Mars dan Jupiter.
2. Komet atau bintang berekor. Garis edarnya eksentrik, perihelionnya sangat dekat dengan matahari, sedangkan aphelionnya sangat jauh, berupa bola gas pijar seperti matahari.
3. Meteor, merupakan batuan dingin yang terjadi akibat gaya tarik bumi sehingga masuk ke atmosfer menjadi pijar karena bergesekan dengan atmosfer.

2.6. deskripsi dan model alam semesta

Kesan umum luas dan megahnya alam semesta diperoleh penghuni Bumi dengan memandang langit malam yang cerah tanpa cahaya Bulan. Langit tampak penuh taburan bintang yang seolah tak terhitung jumlahnya. Struktur dan luas alam semesta sangat sukar dibayangkan manusia, dan progres persepsi dan rasionalitas manusia tentang itu memerlukan waktu berabad-abad.
Deskripsi pemandangan alam semesta pun beragam. Dulu alam semesta dimodelkan sebagai ruang berukuran jauh lebih kecil dari realitas seharusnya. Ukuran diameter Bumi (12.500 km) baru diketahui pada abad ke- 3 (oleh Eratosthenes), jarak ke Bulan (384.400 km) abad ke-16 ( Tycho Brahe, 1588), jarak ke Matahari (sekitar 150 juta km) abad ke-17 (Cassini, 1672), jarak bintang 61 Cygni abad ke-19 , jarak ke pusat Galaksi abad ke-20 (Shapley, 1918), jarak ke galaksi-luar (1929), Quasar dan Big Bang (1965). Perjalanan panjang ini terus berlanjut antargenerasi.
Benda langit yang terdekat dengan bumi adalah bulan. Gaya gravitasi bulan menggerakkan pasang surut air laut di bumi, tak henti-hentinya selama bermiliar tahun. Karena periode orbit dan rotasi Bulan sama, manusia di Bumi tak pernah bisa melihat salah satu sisi permukaan Bulan tanpa bantuan teknologi untuk mengorbit Bulan. Rahasia sisi Bulan lainnya, baru didapat dengan penerbangan Luna 3 pada tahun 1959.
Pada siang hari, pemandangan langit sebatas langit biru dan matahari atau bulan kesiangan; sedang di saat fajar dan senja, langit merah di kaki langit timur dan barat. Interaksi cahaya matahari dengan angkasa Bumi melukiskan suasana langit yang berwarna warni.
Matahari sendiri adalah satu di antara beragam bintang di Galaksi. Ada bintang yang lebih panas dari Matahari (suhu permukaan Matahari 5.800o K), seperti bintang panas (bisa mencapai 50.000oK) yang memancarkan lebih banyak cahaya ultraviolet-cahaya yang berbahaya bagi kehidupan. Ada bintang yang lebih dingin, lebih banyak memancarkan cahaya merah dan inframerah dibandingkan cahaya tampak yang banyak dipergunakan manusia.
Manusia bisa mencapai batas-batas pengetahuan alam semesta yang luas, mengenal ciptaan Allah yang tidak pernah dikenali di muka bumi seperti Black Hole, bintang Netron, Pulsar, bintang mati, ledakan bintang Nova atau Supernova, ledakan inti galaksi dan sebagainya. Akan tetapi, berbagai fenomena yang sangat dahsyat itu tak mungkin didekatkan dengan mahluk hidup yang rentan terhadap kerusakan. Walau demikian, ada jalan bagi yang ingin bersungguh-sungguh menekuninya.

2.7. Bumi dan planet-planet lainya

Dimulai dari planet Bumi: sebuah wahana yang ditumpangi oleh bermiliar manusia. Kecerdasan spiritual manusialah yang akan memberi makna perjalanan di alam semesta ini; perjalanan antargenerasi selama bermiliar tahun tanpa tujuan akhir yang diketahui pasti, yang gratis dan tak berujung, hingga waktu kehancurannya tiba.
Namun Bumi masih terlalu kecil dibandingkan Matahari, sebuah bola gas pijar raksasa, lebih dari 1.250.000 kali ukuran Bumi dan bermassa 100.000 kali lebih besar. Bumi yang tak berdaya, tertambat oleh gravitasi, terseret Matahari mengelilingi pusat Galaksi lebih dari 200 juta tahun untuk sekali edar penuh. (Lalu apa rencana secercah kehidupan kita dalam pengembaraan panjang ini? Sangat sayang bila kita tidak sempat melihat kosmos hari ini. Sangat sayang kita tidak berencana sujud dan berserah kepada Tuhan Yang Mahakuasa.)
Pengiring Matahari lainnya adalah planet Merkurius, Venus, Mars, Jupiter, Saturnus, Uranus, Neptunus, Pluto, asteroid, komet dan sebagainya. Ragam wahana dalam tata surya itu berupa sosok bola gas, bola beku, karang tandus yang sangat panas; semuanya tak terpilih seperti planet Bumi. (Lalu, mengapa wahana yang tersebar di alam semesta yang sangat luas itu tak semuanya mudah atau layak dihuni oleh kehidupan?)
Putaran demi putaran waktu berlalu, kehancuran wahana bermiliar manusia akan menghampiri perlahan tapi pasti. Namun, berbagai pertanyaan manusia tentang misteri alam semesta masih belum atau tak berjawab. Berbagai upaya rasionalitas manusia telah dikerahkan dan pengetahuan bertambah, namun misteri alam semesta itu terus menjadi warisan bagi generasi berikutnya.
Penjelajahan akal manusia mendapatkan fakta-fakta penyusun alam semesta, mulai dari dunia atom, planet, tata surya, hingga galaksi dan ruang alam semesta yang berbatas galaksi-galaksi muda. Dengan itu, pengetahuan manusia merentang dalam dimensi panjang 10-13 hingga 1026 meter, yang merupakan batas fakta-fakta yang dapat diperoleh dalam dunia sains. Pada abad ke-21 manusia masih berambisi untuk menyelami dunia 10-35 meter (skala panjang Planck) atau 10-20 kali lebih kecil dari penemuan skala atom pada dekade pertama abad ke-20. Begitu pula dimensi lainnya seperti waktu, energi, massa, rentangnya meluas dari yang lebih kecil dan lebih besar.
Tentang rentang waktu alam semesta, manusia mendefinisikan berbagai zaman (dan zaman transisi di antaranya): Zaman Primordial, ketika usia alam semesta antara 10-50 hingga 105 tahun, Zaman Bintang, (106 – 1014 tahun), Zaman Materi Terdegenerasi, (1015 – 1039 tahun), Zaman Black Hole, (1040 – 10100 tahun), Zaman Gelap ketika alam semesta menghampiri kehancurannya dan Zaman Kehancuran Alam Semesta, ketika materi meluruh. Tanpa fakta-fakta dan ilmu yang diketahui manusia (atas izin Allah), akhirnya manusia hanya bisa berspekulasi dan tak bisa mendefenisikan berbagai keadaan, misalnya sebelum kelahiran alam semesta dan setelah kehancuran.
Penjelajahan akal manusia bisa menggapai penaksiran hal-hal berikut: jumlah partikel (di Matahari 1060 atau di Bumi 1050), energi ikat (antara Bumi dan Matahari sebesar 1033 Joule), energi radiasi matahari sebesar 1026 watt, energi Matahari yang diterima Bumi sebesar 1022 Joule, energi yang diperlukan manusia per tahun sebesar 1020 Joule, energi penggabungan inti atom, fissi 1 mol Uranium sebesar 1013 Joule, energi yang dihasilkan 1 kg bensin sebesar 108 Joule. Sebuah anugerah yang besar bagi manusia, walaupun melalui proses yang panjang.

 
Pengertian Tata Surya,Teori Terbentuknya Tata Surya, Sejarah Penemuan Tata surya, dan Anggota Tata Surya. Semoga dapat bermanfaat ilmunya bagi sobat-sobat semua.Terus kunjungi

a.      Pengertian tata surya

Tata Surya adalah kumpulan benda-benda langit yang terdiri dari sebuah bintang besar yang disebut matahari, dan semua objek yang terikat oleh gaya grafitasinya. Objek-objek tersebut adalah delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya. Tata Surya (Solar System) atau yang juga disebut keluarga matahari (The sun and its family) adalah suatu sistem yang teridiri dari Matahari sebagai pusar Tata Surya itu dan di kelilingi dengan planet-planet, komet (bintang berekor), meteor (bintang beralih), satelit, dan asteroid.

b.      Terbentuknya tata surya

Ada sekian banyak teori yang dicetuskan oleh para ahli, namun saya akan berbagi beberapa teori yang paling dipercaya dunia internasional:



1.Teori Nebule (Teori Kabut)oleh Immanuel Kant (1749-1827) dan Piere Simon de Laplace (1796)

Matahari dan planet berasal dari sebuah kabut pijar yang berpilin di dalam jagat raya, karena pilinannya itu berupa kabut yang membentuk bulat seperti bola yang besar, makin mengecil bola itu makin cepat putarannya. Akibatnya bentuk bola itu memepat pada kutubnya dan melebar di bagian equatornya bahkan sebagian massa dari kabut gas pada menjauh dari gumpalan intinya dan membentuk gelang-gelang di sekeliling bagian utama kabut itu, gelang-gelang tersebut kemudian membentuk gumpalan pada, nah inilah yang disebut planet-planet dan satelitnya. Sedangkan bagian tengah yang berpijar tetap berbentuk gas pijar yang kita lihat sekarang sebagai matahari.

Teori ini telah dipercaya umat manusia selama kira-kira 100 tahun, tetapi sekarang telah banyak ditinggalkan karena 2 alasan di bawah ini:
  • Tidak mampu memberikan jawaban-jawaban kepada banyak hal atau masalah di dalam tata surya kita
  • Karena munculnya banyak teori yang lebih memuaskan


2.Teori Planetesimal oleh Ahli Geologi Thomas C. Chamberlin (1843-1928) dan Seorang Astronom Forest R. Moulton (1872-1952)

Tata Surya kita terbentuk akibbat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari, dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. 

Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar  disebut protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa materi lainnya menjadi komet dan asteroid.

3.Teori Pasang Surut oleh Dua Orang yang Berasal dari Inggris yaitu Sir James Jeans (1877-1946) dan Harold Jeffreys (1891)

Planet dianggap berbentuk karena mendekatnya bintang lain kepada matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka yang kemudian terkondensasi menjadi planet.

Setelah Bintang itu berlalu dengan gaya tarik bintang yang besar pada permukaan matahari terjadi proses pasang surut seperti peristiwa pasang surutnya air laut akibat gaya tarik bulan. Sebagian massa matahari itu membentuk cerutu itu terputus-putus membentuk gumpalan gas di sekitar matahari dengan ukuran yang berbeda-beda, gumpalan itu membeku dan kemudian membentuk planet-planet.

Teori ini menjelaskan mengapa planet-planet di bagian tengah seperti Yupiter, Saturnus, Uranus, dan Neptunus merupakan planet raksasa sedangkan di bagian ujungnya merpakan planet-panet kecil. Kelahiran kesembilan planet itu karena pecahan gas dari matahari yang berbentuk cerutu itu makan besarnya planet-planet ini berbeda-beda.

Namun Astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi. Demikian astronom Henry Norris Rusell mengemukakan keberatannya atas hipotesis tersebut.

4.Teori Awan Debu oleh carl Von Weizsaeker (1940) yang Kemudian Disempurnakan oleh Gerard P Kuiper (1950)

Tata Surya terbentuk dari gumpalan awan gas dan debu. Gumpalan awan itu mengalami ppemampatan, pada proses pemampatan tersebut partikel-partikel debu tertarik ke bagian pusat awan itu membentuk gumpalan bola dan mulai berpilin dan kemudian membentuk cakram yang tebal di bagian tengah dan tipis di bagian tepinya. Partikel-partikel di bagian tengah cakram itu saling menekan dan menimbulkan panas dan berpijar, bagian inilah yang menjadi matahari. Sementara bagian yang luar berputar sangat cepat sehingga terpecah-pecah menjadi gumpalan yang lebih kecil, gumpalan kecil ini berpilin pula dan membeku kemudian menjadi planet-planet.

5.Teori Bintang Kembar oleh Fred Hoyle (1915-2001)

Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tudak meledak dan mulai mengelilinginya.

2.9. sejarah ditemukanya tata surya

Lima planet terdekat ke matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu, karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.

Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia “lebih tajam” dalam mengamati benda langit yang tidak bisa diamati dengan mata telanjang.

Karena Teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap matahari. Pennalaran Venus mengitari matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolas Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Teleskop Galileo terus disempurnakan oleh Ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, Satelit Saturnus, yang berada hampir dua kali orbit Bumi-Yupiter.

Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler, dan Puncaknya Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya.
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Sehingga pada 1846 ditemukan Neptunus, namun penemuan Neptunus ini tidak dapat menjelaskan secara sempurna pengganggu Uranus. Kemudian pada tahun 1930 ditemukan sebuah planet lain yang diberi nama Pluto, namun lisensinya sebagai planet sudah beberapa tahun dicabut.:D

2.10. Anggota tata surya

1.Matahari

Matahari adalah bintang induk tata surya dan merupakan komponen utama sistem tata surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi elektromagnetik, termasuk spektrum optik.
  • Matahari adalah pusat dari tata surya. Matahari merupakan sebuah bintang yang tidak berbeda dengan bintang lainnya.
  • Matahari adalah suatu bola gas panas yang memancarkan sendiri sumber energi ke segala arah.
  • Matahari merupakan pusat tata surya.
  • Bagi kita matahari itu super besar tetapi ternyata di jagat raya Matahari termasuk bintang yang berukuran kecil.
  • Ukuran garis tengahnya 100 kali lebih besar dari bumi, sehingga jika Matahari itu kita anggap sebagai wadah kosong, matahari dapat menampung lebih dari 1 juta bumi.
  • Matahari dan energi yang dipancarkan lah yang menjamin kehidupan manusia di muka bumi.


2.Planet-Planet

a.Merkurius

Merkurius adalah planet dalam yang terkecil dan termasuk paling dekat dengan Matahari, jarak rata-rata ke matahari 58 juta Km, dan memiliki garis tengah 4.880 Km. Merkurius tidak mengandung atmosfer, suhu disekitar planet berkisar antara 200 C-400 C. Gravitasi merkurius kurang lebih hanya sepertiga kali gravitasi bumi.

b.Venus

Planet ini merupakan planet terdekat dengan bumi, ia memiliki garis tengah sepanjang 12.104 Km. Jarak rata-rata ke Matahari 106 Km, periode revolusinya 224 hari, gravitasi venus 2300 dan tekanan udaranya 20 atmosfer (20 kali tekanan udara di bumi), permukaan Venus ditutupi awan tebal sehingga mencapai 48 Km. Yang menarik hasil pengamatan beberapa pesawat ruang angkasa terdapat formasi batuan muda dan pegunungan tua, atmosfernya berwujud debu kering yang meliputi CO2, N, dan O2.

c.Bumi

Bumi merupakan planet ukuran ketiga, dan satu-satunya planet yang dihuni oleh makhluk hhidup dan terdiri komposisi sebagai berikut :
  • Lapisan biosfer, terdiri dari unsur nikel dan ferum, dan tebalnya kurang lebih 3.470 Km.
  • Lapisan antara memiliki tebal kurang lebih 1.700 Km dan terdiri dari batuan meteorit.
  • Lapisan litosfer yang terdiri dari lapisan Sial karena terdiri dari SiO2 dan Al2 dan O3 dan bagian SiMa yang terdiri dari SiO2 dan MgO serta Al2O3, tebal antara Sial dan sima tidak teratur, dipegunungan letaknya sangat dalam sedangkan di laut bagian Sial langsung berhubungan dengan Sima.

Planet bumi merupakan planet yang istimewa, karena bumi kbukan hanya tempat hidup manusia semata, tapi juga makhluk hidup lainnya berkembang biak dengan baik, Planet bumi memiliki satelit, yaitu bulan.


d.Mars

Mars dilihat dari lintasnnya antara Bumi dan Matahari juga termasuk planet yang terdekat dengan Bumi, jarak rata-rata planet Mars dengan Matahari 228 Km, beredar mengelilingi Matahari dalam waktu 687 hari, waktu rotasinya 24 jam 37 menit 21 detik. Seperti planet lain Mars memiliki dua satelit, yaitu;
Deimos, berdimendi 10x12x16 Km dan periode orbitnya 30,3 hari. Deimos terbit dan terbenam seperti bulan di Bumi.

e.Yupiter

Yupiter merupakan planet terbesar, ia memiliki diameter 130.000 Km. Jarak rata-rata ke matahari kurang lebih sekitar 778 juta Km, dan struktur yupiter hampir sama dengan struktur matahari, yang kebanyakan terdiri dari hidrogen serta campurannya, yaitu NH3, Amoniak, Helium, dan Metan.

f.Saturnus

Planet saturnus planet kedua terbesar setelah Yupiter, jarak rata-rata ke matahari kurang lebih 1.426 Km, jangka revolusi planet ini adalah 29,5 tahun dan waktu yang diperlukan untuk berputar pada sumbunya adalah 10 jam. Saturnus memiliki 17 satelit, dan beberapa yang paling menonjol adalah Titan, Tethys, Rea, Dione, dan tiga cincin indah, ketiga cincin tersebbut dapat diurai sebagai berikut:
  • Cincin A merupakan cincin luar yang garis tengahnya 260.000 Km.
  • Cincin B merupakan cincin tengah yang memiliki diameter sekitar 152.000 Km.
  • Cincin C merupakan cincin yang garis tengahnya 160.000 Km.


g.Uranus

Uranus memiliki jarak rata-rata dengan matahari sekitar 2.869 juta Km, beredar mengelilingi Matahari dalam waktu 84 tahun dengan kecepatan rotasi 11 jam. Planet ini berdiameter 49.700 Km, pada planet ini ditemukan unsur helium, hidrogen dan metan. Planet ini mempunyai lima satelit, yaitu Miranda, Ariel, Umbriel, Titania, dan Oberon. Keistimewaan planet ini adalah letak sumbu rotasinya sebidang dengan bidang revolusinya, pada uranus, matahari bergeser dari utara ke selatan dalam periode revolusinya.

h.Neptunus

Planet Neptunus adalah planet yang terjauh dengan matahari, jaraknya sekitar 4.495 juta Km dengan matahari, dan beredar mengelilingi matahari dalam waktu 165 Tahun. Waktu rotasinya 15 jam. Satelit yang dimiliki Neptunus ada dua, yaitu Triton yang berdiameter 4.000 Km, mempunyai atmosfer, dan bentuknya mirip pluto, sedangkan Nereid diameternya 2000 Km, letaknya lebih jauh dari bumi bila dibandingkan dengan triton.

3.Asteroid

Asteroid merupakan materi batuan yang kedudukanya terletak diantara Mrs dan Yupiter. Materi dari asteroid tersebut sebagian gagal menjadi planet karena adanya gaya gravitasi Yupiter yang sangat kuat dan berlangsung secara terus menerus menghancurkan sebagian lain materinya. Akibatnya hamparan materi itu menjadi sabuk asteroid, yang sekarang menjadi bongkahan cincin raksasa dan serpihan batuan.

Asteroid menempati sabuk utama yang berada diantara orbit Mars dan Yupiter. Asteroid pertama kali ditemukan 1 januari 1801. Di antara pecahannya, batuan terbesar dinamakan Ceres yang bergaris tengah 480 mil, mengelilingi matahari dalam waktu 4,5 tahun.

Asteroid juga merupakan benda angkasa yang ukurannya kecil, namun jumlahnya milyaran.Asteroid sendiri berupa batu-batuan yang juga bergerak mengelilingi Matahari, ukurannya sangat kecil, atau istilah lainyya disebut bintang kerdil dengan diameter lebih dari 240 Km.

4.Komet

Komet merupakan kumpulan bongkahan batuan yang diselubungi kabut gas, ketika mendekati matahari, komet mengeluarkan gas yang bercahaya pada bagan kepala, dan semburan cahaya pada ekornya. Diameter komet termasuk selubung gas kurang lebih sejauh 100.000 Km. Semakin dekat komet dengn matahari semakin besar pula tekanan cahaya matahari yang diterimanya dan akan semakin panjang ekornya. Ekor komet teridiri dari CO, CH, dan gas labil CH2 juga H2O

Komet dalam bahasa yunani artinya bintang berekor dan komet ini adalah benda angkasa yang tidak padat terbentuk dari pecahan bahan yang sangat kecil yaitu debu, temperatur dengan gas yang sangat tipis, sehingga gaya gravitasinya sangat lemah.

Ada dua jenis komet, yaitu

a.Komet Berekor

Komet berekor yaitu komet yang lintasannya berbentuk elips, komet ini bila lintasanya dekat dengan matahari akan melepaskan gas yang diabsorsi diaerah dingin untuk membentuk ekor.

b.Komet Tak Berekor

Komet tak berekor yaitu komet yang lintasannya sangat pendek sehingga tidak memiliki kesempatan mengabsorsi gas di daerah dingin.


5.Bulan 

Bulan adalah satu-satunya satelit alami Bumi, dan merupakan satelit alami terbesar ke-5 di Tata Surya. Bulan tidak mempunyai sumber cahaya sendiri dan cahaya Bulan sebenarnya berasal dari pantulan cahaya Matahari.
Jarak rata-rata Bumi-Bulan dari pusat ke pusat adalah 384.403 km, sekitar 30 kali diameter Bumi. Diameter Bulan adalah 3.474 km,[1] sedikit lebih kecil dari seperempat diameter Bumi. Ini berarti volume Bulan hanya sekitar 2 persen volume Bumi dan tarikan gravitasi di permukaannya sekitar 17 persen daripada tarikan gravitasi Bumi. Bulan beredar mengelilingi Bumi sekali setiap 27,3 hari (periode orbit), dan variasi periodik dalam sistem Bumi-Bulan-Matahari bertanggung jawab atas terjadinya fase-fase Bulan yang berulang setiap 29,5 hari (periode sinodik).




2.11. Asal-usul kehidupan

a.      Teori Abiogenesis
Teori yang dikemukakan Aristoteles ini menyatakan bahwa makhluk hidup tercipta dari benda tak hidup yang berlangsung secara spontan (generatio spontanea). Misalnya cacing dari tanah, ikan dari lumpur, dan sebagainya. Teori ini dianut oleh banyak orang selama beberapa abad.
Aristoteles (384-322 SM), adalah seorang filsuf dan tokoh ilmu pengetahuan Yunani Kuno. Sebenarnya dia mengetahui bahwa telur-telur ikan yang menetas akan menjadi ikan yang sifatnya sama seperti induknya. Telur-telur tersebut merupakan hasil perkawinan dari induk-induk ikan. Walau demikian, Aristoteles berkeyakinan bahwa ada ikan yang berasal dari Lumpur.
Menurut penganut paham abiogenesis, makhluk hidup tersebut terjadi begitu saja secara spontan. Itu sebabnya, teori abiogenesis ini disebut juga generation spontanea. Bila pengertian abiogenesis dan generation spontanea digabung, maka konsepnya menjadi: makhluk hidup yang pertama kali di bumi berasal dari benda mati / tak hidup yang terjadinya secara spontan (sebenarnya ini adalah dua teori yang berbeda, tetapi orang sudah kadung salah kaprah).

Paham abiogenesis bertahan cukup lama, yaitu semenjak zaman Yunani Kuno (ratusan tahun sebelum Masehi) hingga pertengahan abad ke-17, dimana Antonie Van Leeuwenhoek menemukan mikroskop sederhana yang dapat digunakan untuk mengamati makhluk-makhluk aneh yang amat kecil yang terdapat pada setetes air rendaman jerami. Oleh para pendukung paham abiogenesis, hasil pengamatan Antonie Van Leeuwenhoek ini seolah-olah memperkuat pendapat mereka tentang abiogenesis. Hasil pengamatan Anthoni ditulisnya dalam sebuah catatan ilmiah yang diberi judul “Living in a drop of water“. Tokoh lain pendukung teori ini adalah John Needham.
b.      Teori Biogenesis
Teori ini bertentangan dengan teori abiogenesis, karena menganggap bahwa makhluk hidup berasal dari makhluk hidup yang sudah ada sebelumnya. Tiga tokoh terkenal pendukung teori ini adalah Francesco Redi, Lazzaro Spallanzani, dan Louis Pasteur.

1. Francesco Redi

Redi merupakan orang pertama yang melakukan eksperimen untuk membantah teori abiogenesis. Dia melakukan percobaan dengan menggunakan bahan daging segar yang ditempatkan dalam labu dan diberi perlakuan tertentu.
  • Labu I    :  diisi daging segar dan dibiarkan terbuka
  • Labu II   :  diisi daging segar dan ditutup dengan kain kasa
  • Labu III  :  diisi daging segar dan ditutup rapat
Ketiga labu diletakkan di tempat yang sama selama beberapa hari. Hasilnya adalah sebagai berikut:
  • Labu I    :  dagingnya busuk, banyak terdapat belatung
  • Labu II   :  dagingnya busuk, terdapat sedikit belatung
  • Labu III  :  dagingnya tidak busuk, tidak terdapat belatung
Menurut Redi belatung yang terdapat pada daging berasal dari telur lalat. Labu ke III tidak terdapat belatung karena tertutup rapat sehingga lalat tidak bisa masuk. Sayangnya, meskipun tertutup rapat ternyata pada labu tersebut bisa muncul belatung. Ini disebabkan karena Redi tidak melakukan sterilisasi daging pada disain percobaannya.

2. Lazzaro Spallanzani

Spallanzani juga melakukan percobaan untuk membantah teori abiogenesis, tetapi menggunakan bahan kaldu. Disainnya sebagai berikut:
  • Labu I   : diisi kaldu lalu dipanaskan dan dibiarkan terbuka
  • Labu II  : diisi kaldu, lalu ditutup dengan gabus yang disegel dengan lilin, kemudian dipanaskan
Setelah dingin kedua labu diletakkan di tempat yang sama. Beberapa hari kemudian hasilnya sebagai berikut.
  • Labu I   : berubah busuk dan keruh, banyak mengandung mikroba (bakteri)
  • Labu II  : tetap jernih, tidak mengandung mikroba
Menurut Spallanzani mikroba yang tumbuh dan menyebabkan busuknya kaldu berasal dari mikroba yang beraada di udara. Pendukung paham abiogenesis keberatan dengan disain Spallanzani karena menurut anggapan mereka, labu yang tertutup menyebabkan gaya hidup (elan vital) dari udara tidak dapat masuk, sehingga tidak memungkinkan munculnya makhluk hidup (mikroba).

3. Louise Pasteur

Pasteur menyempurnakan percobaan Redi dan Spallanzani. Ia menggunakan kaldu dalam labu yang  disumbat dengan gabus. Selanjutnya gabus tersebut ditembus dengan pipa berbentuk leher angsa (huruf S), kemudian dipanaskan. Setelah dingin dibiarkan beberapa hari kemudian diamati. Ternyata air kaldu tetap jernih dan tidak ditemukan mikroba.
Disain pipa yang berbentuk leher angsa tersebut memungkinkan masuknya gaya hidup dari udara, tetapi ternyata tidak didapati makhluk hidup dalam kaldu. Menurut Pasteur, mikroorganisme yang tumbuh dalam kaldu berasal dari udara. Mereka tidak bisa masuk karena terhambat oleh bentuk pipa. Hal ini bisa dibuktikan bila labu dimiringkan sedemikian rupa sehingga kaldu mengalir melalui pipa dan menyentuh ujung pipa, ternyata beberapa hari kemudian menyebabkan busuknya kaldu.
Dengan demikian Pasteur telah membuktikan bahwa teori biogenesislah yang benar. Muncullah ungkapan :

2.12. Struktur Lapisan Bumi

Bumi tempat kita tinggal saat ini merupakan salah satu anggota tata surya dengan matahari sebagai pusatnya. Jarak bumi dengan matahari sekitar 150 juta km. Bumi berbentuk bulat pepat dengan jari-jari ± 6.370 km. Bumi merupakan planet dengan urutan ketiga dari delapan planet yang dekat dengan matahari.Bumi diperkirakan telah terbentuk sekitar 4,6 milyar tahun yang lalu, dan merupakan satu-satunya planet yang dapat dihuni oleh berbagai jenis mahluk hidup. Permukaan bumi terdiri dari daratan dan lautan. Jika bumi diiris maka akan tampak lapisan-lapisan seperti pada gambar di bawah ini :

Lapisan bumi dibagi menjadi tiga bagian, yaitu sebagai berikut :

1.) Kerak bumi

Kerak bumi adalah lapisan terluar bumi yang terbagi menjadi dua kategori, yaitu kerak samudra dan kerak benua. Kerak samudra mempunyai ketebalan sekitar 5-10 km sedangkan kerak benua mempunyai ketebalan sekitar 20-70 km.. Tebal lapisan kerak bumi mencapai 70 km dan merupakan lapisan tanah dan batuan .Lapisan ini menjadi tempat tinggal bagi seluruh mahluk hidup.Suhu di bagian bawah kerak bumi mencapai 1.100 derajad Celcius.Lapisan kerak bumi dan bagian di bawahnya hingga kedalaman 100 km dinamakan litosfer.
Unsur-unsur kimia utama pembentuk kerak bumi adalah: Oksigen (46,6%), Silikon (27,7%), Aluminium (8,1%), Besi (5,0%), Kalsium (3,6%) Natrium (2,8%), Kalium (2,6%) dan Magnesium (2,1%). Unsur–unsur tersebut membentuk satu senyawa yang disebut dengan batuan.

2.) Selimut atu Selubung Mantel

Selimut merupakan lapisan yang terletak di bawah lapisan kerak bumi.Tebal selimut bumi mencapai 2.900 km dan merupakan lapisan batuan padat.Suhu di bagian bawah selimut bumi mencapai 3.000 derajat Celcius.

3.) Inti Bumi

Inti bumi terdiri dari material cair, dengan penyusun utama logam besi (90%), nikel (8%), dan lain-lain yang terdapat pada kedalaman 2900–5200 km. Lapisan ini dibedakan menjadi lapisan inti luar dan lapisan inti dalam. Lapisan inti luar tebalnya sekitar 2.000 km dan terdiri atas besi cair yang suhunya mencapai 2.200 oC.Inti dalam merupakan pusat bumi berbentuk bola dengan diameter sekitar 2.700 km. Inti dalam ini terdiri dari nikel dan besi yang suhunya mencapai 4500oC.
Berdasarkan penyusunnya lapisan bumi terbagi atas litosfer, astenosfer, dan mesosfer. Litosfer adalah lapisan paling luar bumi (tebal kira-kira  100 km) dan terdiri dari kerak bumi dan bagian atas selubung. Litosfer memiliki kemampuan menahan beban permukaan yang luas misalkan gunungapi.Litosfer bersuhu dingin dan kaku.Di bawah litosfer pada kedalaman kira-kira 700 km terdapat astenosfer.Astenosfer hampir berada dalam titik leburnya dan karena itu bersifat seperti fluida.Astenosfer mengalir akibat tekanan yang terjadi sepanjang waktu.Lapisan berikutnya mesosfer.Mesosfer lebih kaku dibandingkan astenosfer namun lebih kental dibandingkan litosfer.Mesosfer terdiri dari sebagian besar selubung hingga inti bumi.Permukaan bumi ini terbagi atas kira-kira 20 pecahan besar yang disebut lempeng. Ketebalannya sekitar 70 km. Ketebalan lempeng kira-kira hampir sama dengan litosfer yang merupakan kulit terluar bumi yang padat. Litosfer terdiri dari kerak dan selubung atas.Lempengnya kaku dan lempeng-lempeng itu bergerak diatas astenosfer yang lebih cair.Arus konveksi memindahkan panas melalui zat cair atau gas, yang membuat lempeng-lempeng dapat bergerak, yang dapat menimbulkan getaran yang terjadi dipermukaan bumi.

2.13. rumah kaca

a.      Efek rumah kaca

Penggambaran tentang pertukaran energi antara matahari (sumber), permukaan bumi, atmosfer bumi dan angkasa (tempat pelepasan). Kemampuan atmosfer untuk menangkap dan melepaskan energi merupakan karakteristik yang menentukan efek rumah kaca.
Efek rumah kaca, yang pertama kali diusulkan oleh Joseph Fourier pada 1824, merupakan proses pemanasan permukaan suatu benda langit (terutama planet atau satelit) yang disebabkan oleh komposisi dan keadaan atmosfernya.
Mars, Venus, dan benda langit beratmosfer lainnya (seperti satelit alami Saturnus, Titan) memiliki efek rumah kaca, tapi artikel ini hanya membahas pengaruh di Bumi. Efek rumah kaca untuk masing-masing benda langit tadi akan dibahas di masing-masing artikel.
Efek rumah kaca dapat digunakan untuk menunjuk dua hal berbeda: efek rumah kaca alami yang terjadi secara alami di bumi, dan efek rumah kaca ditingkatkan yang terjadi akibat aktivitas manusia (lihat juga pemanasan global). Yang belakang diterima oleh semua; yang pertama diterima kebanyakan oleh ilmuwan, meskipun ada beberapa perbedaan pendapat.

b.      Penyebab efek rumah kaca

Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbon dioksida (CO2) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas CO2 ini disebabkan oleh kenaikan pembakaran bahan bakar minyak, batu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk menyerapnya.
Energi yang masuk ke Bumi:
  • 25% dipantulkan oleh awan atau partikel lain di atmosfer
  • 25% diserap awan
  • 45% diserap permukaan bumi
  • 5% dipantulkan kembali oleh permukaan bumi
Energi yang diserap dipantulkan kembali dalam bentuk radiasi inframerah oleh awan dan permukaan bumi. Namun sebagian besar inframerah yang dipancarkan bumi tertahan oleh awan dan gas CO2 dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.
Selain gas CO2, yang dapat menimbulkan efek rumah kaca adalah belerang dioksida, nitrogen monoksida (NO) dan nitrogen dioksida (NO2) serta beberapa senyawa organik seperti gas metana dan klorofluorokarbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.
c.       Akibat efek rumah kaca

Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrem di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistem lainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.
Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5 °C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5 °C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.

BAB II
PENUTUP
3.1. kesimpulan

Dari uraian diatas dapat diambil kesimpulan bahwa alam semesta mencakup keseluruhan benda-benda alam yang terdiri dari galaxy, bintang-bintang, matahari, planet-planet, bulan dan awal kemunculan mahluk hidup. Yang dimana seluruh penjelasan dari peneliti sesungguhnya sudah diterangkan didalam Al-Qur’an.

3.2. Saran 

1. hendaknya kita sebagai manusia yang rapuh di alam semesta ini dapat menjadi manusia yang mampu menjaga dan mempertahanka apa yang telah kita miliki seperti menjaga alam ini di bumi yang kita diami.
2. Sebaiknya ilmu pendidikan yang kita pergunakan tidak terlepas dari koridor keilmuan.
3. sebaiknya ilmu tentang astronomi harus diberikan sejak dini seperti diajarkan disekolah-sekolah, agar para murid lebih terbuka mata hatinya untuk mempelajari tentang ilmu ini. Dan kedepanya agar nantinya tidak hanya peneliti-peneliti luar saja yang dapat meyumbangkan teori-teorinya dsb.

Daftar pustaka

Cronin, Vincent, The View from Planet Earth: Man Looks at the Cosmos, New York: William Morrow & Company, Inc., 1981, ISBN 0-688-00642-6
Roos, Matts Introduction to Cosmology. John Wiley & Sons, Ltd, Chichester: 2003.
Hawley, John F. & Katerine A. Holcomb Foundations of Modern Cosmology. Oxford University Press, Oxford: 1998.
Hetherington, Norriss S. Cosmology: Historical, Literary, Philosophical, Religious, and Scientific Perspectives. Garland Publishing, New York: 1993.
Gal-Or, Benjamin, Cosmology, Physics and Philosophy, Springer Verlag, 1981, 1983, 1987, New York.
http://rohimsbastianpartii.blogspot.com/
 http://biologimediacentre.com/asal-usul-kehidupan-biogenesis-versus-abiogenesis-1-2/

Tidak ada komentar:

Posting Komentar